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Lipid analyses by gas chromatography (GC) and by high resolution (HR) 13C NMR combined with chemo-
metrics were used to identify wild and farmed Atlantic salmon and the farm origin of farmed salmon. Ref-
erence samples were 59 specimens from four different farms in the Hardangerfjord (Norway) and the test
fish were 17 free-living fish, caught in the same fjord. Four free-living fish were identified as wild by their
fatty acids profile, n3/n6 ratio and by principal component analysis. To identify the farm of origin of
farmed salmon, Bayesian belief networks (BBN) and support vector machines (SVM) were the best meth-
ods classifying correctly 58 (BBN and GC) and 56 (SVM and 13C NMR) of the 59 reference samples. Of the
12 free-living fish identified as farmed, four seemed to originate from farm 2 and 3 from farm 4. The rest
could not be clearly attributed to any of the four farms and may originate from any of the other 26 farms
located in the fjord.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Suitable analytical techniques are required by the organisations
responsible for consumer protection in order to ensure the authen-
ticity of foodstuff. Similarly, fisheries and aquaculture manage-
ment require the same type of techniques to document the
origin of fish: wild, farmed and the farm of origin. In addition, there
has been an increasing awareness and concern among consumers
about the origin and the conditions under which their foodstuffs
are produced and consumers demand correct information about
the species, method of production and geographical origin (Frewer
& Kher, 2008, personal communication). Moreover, this informa-
tion is regulated in the EU (CR 2065/2001) and other countries,
such as USA (The Fair Packaging and Labeling Act) and Japan
(Japanese Agricultural Standards Law). Regarding fisheries and
aquaculture management, the authorities call for reliable produc-
ers to identify the origin of the products, going back to the fishing
ground (Primmer, Koskinen, & Piironen, 2000) or the farm. In the
case of aquaculture products, markers need to be developed to
identify escaped from wild fish and also the farm origin of the es-
ll rights reserved.
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caped fish: 600,000 cultivated salmon escaped from farms in Nor-
way in 2007 (www.statistics.no). The true figures of escaped fish
are considered to be higher than the official ones, sometimes be-
cause farmers are not aware of their fish escaping and others due
to under-reporting, since they have to pay severe fines both if they
delay reporting a suspected incident and also if the escape is due to
negligence.

The discrimination of wild from farmed Atlantic salmon has
been successfully achieved by a variety of methods, from genetic
analysis, often using microsatellite polymorphisms (Coughlan
et al., 1998; Glover, Skilbrei, & Skaala, 2008; Skaala, Taggart, &
Gunnes, 2005), to stable isotope ratio analysis (d13C, d15N, d18-
Oglycerol, d18Ooil, d18Owater; Aursand, Mabon, & Martin, 2000;
Thomas et al., 2008), gas chromatography analysis of the fatty
acids from the triglyceride fraction and 13C and 1H HR NMR spec-
troscopic analyses (Aursand et al., 2000; Thomas et al., 2008).
The assignment of individuals to their population of origin by using
multilocus genotyping, in particular using microsatellite data, has
been proven possible provided that there are enough genetic mark-
ers differing among the potential populations of origin (Skaala,
Høyheim, Glover, & Dahle, 2004). The analysis of the fatty acid
composition of the triglyceride fraction has often been proven to
be sufficient to discriminate farmed from wild salmon (Aursand
et al., 2000; Martinez, in press; Molkentin, Meisel, Lehmann, &
Rehbein, 2007) due to the fact that this lipid fraction reflects the
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composition of the diet, and the commercial diets have variable –
and sometimes high – amounts of vegetable oils which are nor-
mally absent from the natural feed of wild salmonids (Martinez,
2006; Thomas et al., 2008). Similarly, the HR NMR spectra contain,
in addition to the information regarding the fatty acid composition,
other relevant parameters such as the positional distribution of the
fatty acids and other biochemical compounds, and it has also been
proven suitable to discriminate the production method (Aursand,
Jørgensen, & Grasdalen, 1995; Martinez, 2006).

Optimal application of these analytical techniques, in particular
of the complex information contained in the HR NMR spectra, re-
quires the use of advanced chemometrics in order to obtain correct
classifications, such as principal component analysis (PCA), proba-
bilistic neural networks (PNN) (Aursand, Standal, & Axelson, 2007;
Specht, 1990), Bayesian belief networks (BBN) (Glover et al., 2008;
Heckerman, Geiger, & Chickering, 1995) or support vector ma-
chines (SVM) (Masoum et al., 2007).

In 2003, the Norwegian Ministry of Fisheries took the initiative
to set up a national committee to investigate some questions
regarding the tagging of farmed fish. In the same year, the Director
of Fisheries set up the Tagging Committee with representatives of
the aquaculture industry, the research community and the author-
ities, with the mandate to present a concrete range of tagging/trac-
ing systems for farmed salmon. Several techniques were selected
for testing, including genetic analysis (Glover et al., 2008) and
the lipid analyses presented here. The aim of this work was to
examine the suitability of fatty acid profiling by gas chromatogra-
phy and 13C HR NMR of lipids extracted from the muscle fraction of
Atlantic salmon in combination with chemometric analyses, in or-
der to identify: (1) the farm where cultivated fish were reared and
(2) in the case of fish captured outside pens in the fjord, whether it
was possible to classify them as originating from a given farm.
From each of the four selected farms from the Hardangerfjord
(Norway), 15 Atlantic salmon and their feeds were collected in July
2006. Additionally, 17 salmon caught in the same fjord during the
period October 2005–October 2006, were examined in this work.

2. Materials and methods

2.1. Fish and feed samples

Salmon and samples of their feeds were collected from four of
the about 30 farms located in the Hardangerfjord (Norway) in July
2006. In addition, 17 free-living salmon (individually numbered
501–517) were caught by net bags in the same fjord during Octo-
ber 2005–October 2006 by fishermen. The free-living fish number
512 was visually identified as a rainbow trout. Microscopic exam-
ination of the scales of the free-living fish, carried out routinely by
the Norwegian Institute for Nature Research according to Lund and
Hansen (1991) indicated that only fish 505 and 510 had the sharp
and clearly defined transition zones from freshwater to saltwater
Table 1
Data on the fish samples. Weight and fat content are given as average ± std except for
the % fat content of the free-living fish, where it is given the lowest and highest % fat
values measured in that group.

n Weight (kg) Fat (%) Farm number Feed

15 3.15 ± 0.77 13.12 ± 3.47 1 Skretting optiline
15 3.69 ± 1.62 11.89 ± 5.28 2 Ewos
15a 4.82 ± 1.11 17.24 ± 1.84 3 Skretting optiline
15b 4.38 ± 1.47 16.67 ± 3.01 4 Ewos (Bremnes Seawash)
17 3.52 ± 0.94 2.21–21.52c Free-living Unknown

a One fish not available for NMR.
b One fish not available for GC.
c Lowest and highest % fat recorded in the group.
characteristic for wild salmon. All the other free-living fish (501–
504; 506–509 and 511–517), lacking the transition zone, were con-
sidered farmed according to this information. See Table 1 for addi-
tional data.

The fish was frozen at �20 �C and transported by boat to our
laboratory in August 2006 (farmed fish) and in January 2007
(free-living fish). The fish were thawed, gutted and muscle samples
were cut and further stored at �80 �C until the lipid was extracted.
The samples of feed were transported and stored at room temper-
ature until the lipid was extracted.

2.2. Fat extraction

Lipid extraction was performed according to a modified Bligh
and Dyer (1959) procedure: 10 g of fish muscle or 10 g of feed were
homogenised for 2 min with a mixture of 16 ml of H2O, 40 ml of
methanol and 20 ml of chloroform. Then 20 ml of chloroform were
added to the mixture and homogenised for another 40 s prior the
addition of 20 ml of H2O and a final homogenisation for 40 s. The
homogenate was centrifuged for 10 min at 4100g and the chloro-
form phase containing the lipids was recuperated for subsequent
GC and NMR analyses.

2.3. Fatty acid (FA) analysis by gas chromatography (GC)

The lipids were first transesterified with boron trifluoride-
methanol and 0.5 M methanolic sodium hydroxide and the fatty
acid methyl esters (FAMEs) were extracted into hexane (AOCS
Method CE 2-66). An internal standard (21:0 methyl ester) was
added to the extract prior to methylation. FAMEs were analysed
on a Fison 8160 (Fisons Instruments S.pA. Milan, Italy) capillary
gas chromatograph equipped with capillary cold on-column injec-
tor, a fused silica capillary column, Omegawax 320 (30 m, 0.32 mm
id, 0.25 lm film thickness; Supelco Inc., Bellefonte, PA) connected
to a flame ionisation detector (FID). The FID was connected to a
computer implemented with Chrom-card for Windows 1.21 soft-
ware. The gas chromatograph was provided with AS800 auto-sam-
pler. The oven temperature was increased from 80 to 180 �C at
25 �C min�1 and held for 2 min. Then the temperature was further
increased by 2.5 �C min�1 to 205 �C and held for 8 min, and up to
215 �C min�1 and held for 3 min. The temperature of the detector
was 250 �C. Hydrogen was used as carrier gas at a flow rate of
1.6 ml min�1. The instrument was calibrated using the reference
standards mixture GLC-68-D, (Nu-Chek-Prep, Elysian, MN). The
samples were run under the same conditions than the reference
standards and the FAMEs were identified by comparison of their
retention times with those of the reference standards used to cal-
ibrate the instrument. In addition, each fatty acid had been identi-
fied in our laboratory in previous works using the individual
FAMEs.

The fatty acids analyzed were: C12:0, C14:0, C14:1n5, C16:0,
C16:1n7, C18:0, C18:1n9, C18:1n7, C18:2n6, C18:3n6, C18:3n3,
C18:4n3, C20:0, C20:1n9, C20:1n7, C20:2n6, C20:3n6, C20:4n6,
C20:3n3, C20:4n3, C20:5n3, C22:0, C22:1n11, C22:1n9, C22:5n3,
C24:0, C22:6n3 and C24:1n9.

2.4. 13C NMR analysis

Before analysing the lipid extract by NMR, most of the chloro-
form phase was removed by evaporation. The acquisition of NMR
spectra was carried out as follows: about 70 mg of fish oil were
mixed with 0.5 ml of CDCl3 (99.8% purity, Isotec Inc., Matheson)
and placed in 5-mm NMR tubes. Proton-decoupled 13C spectra
were recorded on a Bruker Avance instrument at 125.75 MHz (Bru-
ker BioSpin GmbH, Rheinstetten, Germany). A semiquantitative ap-
proach was chosen due to the fact that quantitative measurements
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require considerably longer experimental time. Although the signal
intensities within each spectrum are not quantitative, the relative
intensities for corresponding signals across different spectra are
comparable. When the same oil was run at different concentra-
tions, we could detect minor variations in signal intensities for
some resonances as a consequence of differential signal overlap
and minor solvent effects. Minor perturbations of selected reso-
nances do not significantly impact on the classification accuracy
since it is the total relationship among all peaks that is being mod-
elled. In this respect, the PNN, SVM and BBN approaches are robust
(including routine and unavoidable variations in such basic factors
as signal-to-noise ratios). For pattern recognition and classification
studies, it is the overall relationship among resonances that deter-
mine class assignment. These patterns exist clearly even for spec-
tra acquired under non-equilibrium conditions, the key factor
being that the spectra must be acquired under conditions as simi-
lar as possible: optimally, under identical conditions.

The following experimental conditions were applied: spectral
width 200.78 ppm, pulse angle 30�, relaxation delay 2.5 s, dwell
time 19.80 ls, acquisition time 2.0 s, and time domain 101,006
data points. The number of scans was set to 1k for the spectra used
in the multivariate data analysis. Prior to Fourier transformation, a
line-broadening factor of 0.1 Hz was applied to minimise noise, but
not at the expense of resolution among closely spaced resonances.
Chemical shifts were referenced to the CDCl3 peak at 77.0 ppm. The
resulting Bruker 1r files were converted to ASCII files and prepro-
cessed prior to multivariate data analysis treatment.

2.5. Chemometric analyses

For data treatment of the GC analysis, the input data were the
relative amounts of each of the 28 analyzed FA in % of the area un-
der the peak, when 100% was the sum of all the areas for the peaks
corresponding to the 28 FAs. From the NMR full spectra, we ob-
tained first the position of the peaks (shift resonance values in
ppm) in each spectrum and the corresponding intensities for all
resonances with relative intensities greater than 1.5% of the maxi-
mum peak intensity (excluding any solvent resonances). Spectra
were peak aligned (Lee & Woodruff, 2004), and then normalised,
with the maximum non-solvent peak in each spectrum scaled to
a value of 100. This produced over 10,000 chemical shift values
from each HR 13C NMR spectrum, which were reduced to the best
(most informative) 249 chemical shift values by Uniformative Var-
iable Elimination Partial Least Square Regression (PLS-UVE) for
chemometric analyses.

The results of the GC analyses and the NMR spectra were sub-
mitted to four classification techniques: (1) principal component
analysis (PCA) using the Unscrambler�, v9.7, CAMO software AS,
Norway; (2) probabilistic neural network analysis (PNN), using
the software AI Trilogy, NeuroShell Classifier, Ward Systems Group
Inc., Frederick, MD, USA; (3) support vector machines (SVM) (Cris-
tiani & Shawe-Taylor, 2000) with the programme Tiberius v6.13,
Tiberius Data Mining, Melbourne, Australia and (4) Bayesian belief
network (BBN) classifications employing Netica v4.02, Norsys Soft-
ware Corporation, Vancouver BC, Canada.

Principal component analysis (PCA) (Jolliffe, 1986), is a vector
space transform often used to reduce multidimensional data sets
to lower dimensions for analysis. It is mostly used as a tool in
exploratory data analysis and for making predictive models. In
PCA, the original variables are transformed into new, uncorrelated
variables called principal components, which retain as much as
possible of the information present in the original data. Each prin-
cipal component (PC) is a linear combination of the original vari-
ables. The scores of a subset of the principal components, can be
used in subsequent multivariate analysis. Validation procedures
are used to indicate how well a model will perform for future sam-
ples taken from the same population as the calibration samples
and to selected the suitable number of components (to avoid using
too many components that would be trying to explain the noise in
the data). There are several available validation methods. The
method used here, called full cross-validation, is a validation meth-
od where some samples are kept out of the calibration and used for
prediction. This is repeated until all samples have been kept out
once. In full cross-validation, only one sample at a time is kept
out of the calibration. For interpretation of the data, samples that
cluster together in the scores plot have more features in common
than samples that do not cluster. In the present case, this statistical
analysis may be used to attribute a given origin to an unknown
sample, but it does not need to be so: samples originating from
the same farm may be scattered rather than form compact clusters
but also there may be additional variables, not included in the
model, containing information essential to identify the origin. If
that is the case, the clustering will not be sufficient to identify
the origin, although it will indicate similarity regarding the vari-
ables used as input for the model.

The probabilistic neural network was developed by Specht
(1990). It uses a supervised training set to develop, from the known
input reference data, distribution functions within a pattern layer.
PNNs have input, pattern and summation layers. PNN operates by
defining a probability density function (pdf) for each class based on
the training set data and an optimised kernel width parameter.
Each pdf is estimated by placing a Gaussian-shaped kernel at the
location of each pattern in the training set such that the pdf defines
the boundaries for each data class, while the kernel width deter-
mines the amount of interpolation that occurs between adjacent
kernels. When an input test vector is presented, the first layer com-
putes distances from the input vector to the training input vectors
and produces a vector whose elements indicate how close the in-
put is to a training input. The second layer sums these contribu-
tions for each class of inputs to produce as its net output a
vector of probabilities. Finally, a complete transfer function on
the output of the second layer picks the maximum of these proba-
bilities, and produces a one for that class and a zero for the other
classes. In the present case, we defined a model with four output
classes (one for each farm) for classification when only the refer-
ence samples were used as input, since we knew a priori that there
were only four classes in the model. For the second part of the
work, the classification of the free-living fish (whose origin was un-
known) we defined a model with five possible output classes: one
for each farm and a fifth one for ‘‘any other origin” (which would
include wild or another farm not sampled). Two types of classifica-
tion test were used: the first used leave-one-out cross-validation
and the second involved training the classification model on a ran-
domly chosen set of samples (‘‘training” set) and then applying it
to the a ‘‘test” (or validation) set of samples that had not been used
in creating the model, in order to simulate the prediction of
unknowns.

Support vector machines (SVMs) (Cortes & Vapnik, 1995) are a
set of related supervised learning methods used for classification
and regression that belong to a family of generalised linear classi-
fiers (see also http://en.wikipedia.org/wiki/Support_vec-
tor_machine). In class separation by SVM, the optimal separating
hyperplane between the two classes are searched for by maximis-
ing the margin between the classes’ closest points. Those training
points lying on one of the hyperplanes and whose removal would
change the solution found are called support vectors, and the mid-
dle of the margin is the optimal separating hyperplane. For over-
lapping classes, data points on the ‘‘wrong” side of the
discriminant margin are weighted down to reduce their influence.
When a linear separator cannot be found, data points are projected
(via kernel techniques involving Gaussian radial basis functions or
polynomials) into a higher-dimensional space where the data
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Fig. 1. Principal component analysis of the farmed fish and their feeds using 28 FA
and the n3/n6 value as variables. Top, scores plot, bottom, loadings plot. The model
was cross validated and centered.
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points effectively become linearly separable. Using SVM algo-
rithms, the model will classify the samples analyzed as ‘‘belonging”
or as ‘‘not belonging” to a given class. The classification test used
involved, as above, training the classification model on a ‘‘training”
set and them applying it to a ‘‘test” set of samples.

A Bayesian network, also called a belief network, is a probabilis-
tic graphical model that represents a set of variables and their
probabilistic independencies. A Bayesian net (Heckerman et al.,
1995; Pearl, 1988) is a graph-based model for representing proba-
bilistic relationships between random variables. The random vari-
ables are modelled as graph nodes, probabilistic relationships are
captured by directed edges between the nodes and conditional
probability distributions associated with the nodes. Nodes can rep-
resent any kind of variable, be it a measured parameter, a latent
variable or a hypothesis. A Bayesian net asserts that each node is
statistically independent of all its nondescendants, once the values
of its parents (immediate ancestors) in the graph are known. Like
in the case of PNN, the BBN algorithm was tested first to classify
the known farmed fish to their farm of origin, i.e., an output of four
classes for the model. The BBN algorithm was then applied to all
farmed and free-living farmed fish with an output of five classes:
the four farms and an extra class of ‘‘any other origin”. As before,
the classification test used involved training the classification
model on a ‘‘training” set and them applying it to a ‘‘test” set of
samples.

In Section 3, the training and test data sets appear combined in
only one instead of reporting the validation and classification tests
separately. This has been done because for most methods the train-
ing accuracy is almost always close to 100%.

3. Results and discussion

3.1. FA profiles

The feed used in farms 2 and 4 contained higher levels of C16:0
(palmitic acid), C20:1n9 (eicosenoic acid), C20:5n3 (eicosapentae-
noic acid, EPA), C22:1n11 (cetoleic acid) and C22:6n3 (docosahex-
aenoic acid, DHA), while the feed used in farms 1 and 3 had higher
contents of C18:1n9 (oleic acid), C18:2n6 (linoleic acid, LA) and
C18:3n3 (a-linolenic acid, ALA). The latter three are abundant in
plant oils, in particular C18:2n6, high in soybean oil and present
only in minor amounts in some wild fatty fish species (Martinez,
2006). Salmonids, sardines and peruvian PUFA (polyunsaturated
fatty acids mixture used as ingredient in feed formulations) are
usually rich in C16:0; C18:1n9; C20:5n3 and C22:6n3, and C22:1
(coho salmon), while herring has high contents of C20:1n9 and
C22:1n11. This indicates that the feed used in farms 1 and 3 had
a higher amount of vegetable oils than the feed used in farms 2
and 4.

Principal component analysis was performed using 29 variables
in the model: the 28 FA and the n3/n6 ratio. The results of the mod-
el for all the farmed fish and feeds are shown in Fig. 1: the first
component explained 68% and the second 15% of the total variabil-
ity of the model and the most relevant FA were C18:1n9, C18:2n6
and C18:3n3 with the highest positive loadings on PC1 and
C22:6n3, C20:5n3, C16:0 and n3/n6 with the highest negative
loadings for the same PC1, i.e., the distribution of samples along
the PC1 axis would indicate the amount of vegetable (positive
loadings) versus fish oils (negative loadings).

The second factor was mostly due to the FA C16:0. The scores
plot clearly separated the feed used in farms 1 and 3 versus the
feeds used in farms 2 and 4. The distribution of the individual fish
did not follow the same pattern as that of their feeds: while most
salmons from farm 2 did resemble their diet, with low score values
on PC1 (low content in vegetable oils and a high n3/n6 ratio), fish
from farm 4 had in fact the highest positive scores in PC1 and clus-
tered closer to fish from farm 3, while fish from farm 1 were be-
tween those from farm 2 and the cluster of farms 3 and 4.
Moreover, unlike fish from farms 3 and 4 that formed compact
clusters, fish from farm 1 were more stretched along the PC1 axis
and fish from farm 2 extended along both axis. This is shown in
Fig. 2 (top), where only the farmed fish have been included in
the model.

Atlantic salmon selectively retains or metabolises different fatty
acids: C22:5n6 is selectively deposited, so that the concentration in
the flesh is usually higher than in the diet, while C22:1n11,
C18:2n6 and C18:3n3 are selectively metabolised (Bell et al.,
2001). Also, the fatty acids C18:1n9 and C18:2n6 can be considered
as markers for vegetable oils and the latter seems to be the most
persistent after a dietary switch (Bell et al., 2001). This affects
the restoration of the n3/n6 ratio which is usually higher in wild
than in farmed salmon (Martinez, 2006; Thomas et al., 2008). Thus,
the difference in the FA profile of farms 2 and 4 can be explained if
fish from farm 4 have been receiving the analyzed feed only for the
last period of time so that the washing out period from a hypothet-
ical previous feed richer in vegetable oils, had not been completed.
That would explain their proximity to fish receiving a diet richer in
vegetable oils, such as those from farm 3. An alternative explana-
tion may be that fish from farms 3 and 4 were larger and had a
higher fat content than fish from farms 1 and 2, which would ex-
plain a higher content of the most persistent FA, namely C18:1n9
and C18:2n6, in their higher triglyceride fraction.

Fig. 2 (middle) shows the results of analysing all the fish, both
farmed and the free-living. Four of the free-living fish, specimens



Fig. 2. Scores plot of the principal component analysis of only the farmed fish (top)
the farmed and all free-living farmed fish (middle) and of the farmed and the free-
living escaped fish (bottom), using 28 FA and the n3/n6 value as variables. The
model was cross validated and centered.
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505, 510, 511 and 516 displayed the FA composition (high DHA
and EPA and low C18:1n9 and C18:2n6) and high n3/n6 ratio char-
acteristic of wild fish (Aursand et al., 2000; Martinez, 2006; Tho-
mas et al., 2008). Of the rest, individuals 502, 508, 509, 512 and
514 clustered close to fish from farm 2; fish numbers 513, 515
and 517 were close to fish from farm 4; and fish 501 and 507 were
also close to farm 4 but scored higher than farm 4 on PC1. Free-liv-
ing fish 503, 504 and 506 clustered close to farms 3 and 1, which
were, as mentioned above, difficult to separate by this analysis
(Fig. 2, middle and bottom). Fish 512, identified morphologically
as a rainbow trout, was according to this analysis undistinguish-
able from fish from farm 2, apparently indicating that it had re-
ceived the same feed used in farm 2. These results are
summarised in Table 2.

The contradiction between the results of the scale morphology
and FA composition for fish numbers 511 and 516 (that lacked the
transition zone characteristic for wild salmon but did not classify
with farmed salmon according to the FA profile) can be explained
because according to scale morphology, about 5% of wild salmon
would be identified as farmed for displaying a diffusing transition
between the freshwater and the saltwater zones (Lund & Hansen,
1991). However, a more likely explanation may be that these
two fish either escaped or were freed for the purpose of repopula-
tion, early in their life. Indeed, there is a stocking station in the
Hardangerfjord that liberates about 30,000 individuals a year. In
any case, whether escaped of freed, these two fish had been long
enough in the wild to achieve a FA profile that made them indistin-
guishable from wild individuals and they were clearly different
from all the other farmed and free-living salmons.

PCA is only capable of identifying gross variability, it is not
capable of distinguishing ‘among-groups’ and ‘within-groups’ var-
iability, and it is frequently successful since the among-groups var-
iability dominates the within-groups variability. When PCA locates
a direction of ‘maximum gross variability’ it has in fact found a
direction that is consistent with group separation. However, if this
is not the case, and the group-to-group differences do not domi-
nate the total variability as measured by the variance–covariance
matrix, PCA fails as a classification tool. That may be the reason
for the improvement in the classification of the reference samples
when we applied any of the additional multivariate data analyses.
Very good classifications were obtained, with values of between
93.3% and 100% correct assignments (Tables 3 and 4). The data
shown in Table 3 include the added results of the training and test-
ing data sets for the PNN and BBM models. The PNN model was un-
able to classify one fish from farm 2, but all the other ones were
correctly ascribed to their farm of origin, while BBN misclassified
only one fish from farm 1 to farm 3 (Table 3). The SVM model mis-
classified one fish from farm 2, one from farm 3, and misclassified
to farm 3 a fish of unknown origin (Table 4).

The 10 most relevant FA on the BBN model were C18:2n6,
C18:3n3, C20:4n6, C22:1n9, C18:4n3, C20:3n3, C22:6n3,
C16:1n7, C20:5n3 and C18:0, with mutual information values
varying from 1.18 to 0.74. For feature selection, the mutual infor-
mation (Peng, Long, & Ding, 2005) between each attribute and
the class attribute is measured. Mutual information measures the
strength of the correlation between the values of the attribute
and the values of the class; it quantifies the distance between
the joint distribution of two discrete random variables X and Y
and what the joint distribution would be if X and Y were truly inde-
pendent. The influence of each FA on the BBN model was different
from that exerted on the PCA: for example C18:2n6 was one of the
most relevant FA in both cases, but then C18:3n3 was the second
most relevant for the BBN, while it had only a modest positive
loading of PC1 and practically no influence on PC2.

In order to identify the origin of the free-living fish, the models
for PNN and BBN had five output classes, one for each farm and an-
other one for ‘‘any other origin”. Table 2 shows that all the wild fish
were correctly classified as not belonging to any of the farms. Of
the three multivariate data analyses used on the GC data, PNN
seemed to be the worst when it came to identifying the origin of
the free-living individuals: while both SVM and BBN were able to
allocate eight individuals to farms 2, 3 and 4, (with full agreement
in these assignments), PNN was only able to allocate two fish. One
of them agreed with the other statistics but interestingly, the other
one, number 513, was allocated to farm 4 by PCA of GC and by all
the NMR analyses (see below), but not by either SVM or BBN of GC
data. In total, GC analysis classified 4 specimens as belonging to
farm 2 (including the rainbow trout), 3 or 4 individuals to farm 4
and 1 to farm 3.

3.2. 13C NMR data

PCA analysis of the 13C NMR spectra showed the same pattern of
the PCA analyses of the fatty acid profiles (not shown): the samples



Table 2
Classification of free-living fish to their farm of origin according to the different methods tested. PCA, principal component analysis; PNN, probabilistic neural networks; SVM,
support vector machines; BBN, Bayesian belief network; GC, gas chromatography; NMR, HR 13C NMR, the number in parenthesis indicates the farm to which the specimen was
close to, but not clustering with; –, individual classified as being from ‘‘any other origin”; X, unknown origin; LC, lack of consensus in the origin of the fish.

Fish number Possible origin GC NMR

PCA PNN SVM BBN PNN SVM BBN

501 X – – – – – – –
502 X (2) – – – – – –
503 LC 3/4 – – – 4 4 3
504 X – – – – – – –
505 W Wild – – – – – –
506 LC 1/3 – 3 3 1 – 1
507 LC – – 4 4 3 1 4
508 2 (2) – 2 2 2 – 2
509 2 (2) – 2 2 – 2 2
510 W Wild – – – – – –
511 W Wild – – – – – –
512 2 2 2 2 2 2 2 4
513 4 4 4 – – 4 4 4
514 2 (2) – 2 2 – – 2
515 4 4 – 4 4 4 4 4
516 W Wild – – – – – –
517 4 4 – 4 4 4 4 4

Table 3
Results of the classification of farmed fish according to the GC and NMR data and using PNN and Bayesian analyses: number of fish allocated to each farm.

Analysis Actual farm of origin Total Correct classification (%)

1 2 3 4

PNN of GC dataa (n = 59 fish) Classified as from farm 1 15 0 0 0 15 100
2 0 14 0 0 14 93.3
3 0 0 15 0 15 100
4 0 0 0 14 14 100

Bayesian of GC data (n = 59 fish) Classified as from farm 1 14 0 1 0 15 93.3
2 0 15 0 0 15 100
3 0 0 15 0 15 100
4 0 0 0 14 14 100

PNN of NMR data (n = 59 fish) Classified as from farm 1 13 1 0 1 15 86.7
2 0 14 0 0 14 100
3 1 0 14 0 15 93.3
4 1 0 0 14 15 93.3

Bayesian of NMR data (n = 59 fish) Classified as from farm 1 14 0 1 1 15 93.3
2 0 15 0 0 15 100
3 1 0 10 3 14 71.4
4 1 0 0 14 15 93.3

a One individual from farm 2 could not be classified according to PNN analysis.

Table 4
Results of the classification of farmed fish according to the GC and NMR data and using SVM analysis: number of fish allocated to each farm.

Actual farm of origin

1 Not 1 2 Not 2 3 Not 3 4 Not 4

GC data
Correctly classified 15 44 14 44 14 43 14 45
Wrongly classified 0 0 1 0 1 1 0 0
Correctly classified (%) 100 98.31 96.61 100

NMR data
Correctly classified 14 43 14 44 14 45 15 44
Wrongly classified 1 1 1 0 0 0 0
Correctly classified (%) 96.6 98.3 100 100
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from farm 2 were quite different from the others, showing a high
degree of variability; samples from farm 1 were the most similar
to farm 2 and the most scattered in the map, and samples from
farms 3 and 4 clustered together at the other end of PC1.

Application of the chemometric techniques to the reference
farmed fish showed very good results with the NMR data, although
not as good as with the GC data, with correct classifications varying
between 71.4% and 100% (Tables 3 and 4). Thus, PNN analysis mis-
classified a total of four fish: two fish from farm 1 (allocating them
to farms 3 and 4); one specimen from farm 2 (misclassified in farm
1) and one from farm 4 (misclassified in farm 1). The BBN calcula-
tions gave the worst results with the reference fish: it misclassified
about 10% of the individuals and only classified correctly all fish from
farm 2 (Table 3). SVM classified correctly all fish from farms 3 and 4,
but misclassified one fish to farm 2, another fish to farm 1 and one
fish that belonged to farm 1 was classified as of other origin (Table 4).
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The application of these models to the whole set of NMR data,
both reference farmed and free-living fish, is shown in Table 2.
As expected, none of the fish shown to be wild by GC analysis were
attributed to any of the farms. There was consensus among all the
analysis regarding fish 513, 515 and 517 as originating from farm
4; fish 508, 509 and 514 as escapes from farm 2, and 512 was as-
signed to farm 2 by all the analyses except BBN of NMR data that
placed this fish in farm 4. Fish 503, 506 and 507 might have be-
longed to any of farms 3 or 4; 1 or 3 or either 1, 3 or 4, respectively.
Alternatively, taking into account that there are approximately 30
farms in this fjord, it is possible that these fish may have escaped
from some farm(s) that may use similar feeds to the ones tested
here. Fish 501, 502 and 504 were identified as farmed, but not
belonging to any of the four reference farms examined in this work.

In general, the ability to correctly classify the reference samples
according to their farm of origin can be considered as excellent by
most of these methods (see Tables 3 and 4), mainly SVM on NMR
data, with almost 99% correct classification, followed by any of
the statistical treatments on GC data (96.8–98.3% success) while
NMR data in combination with either PNN or BBN gave the lowest
number of correctly allocated reference samples (89.5–93.3% cor-
rect assignments). These figures represent a much higher number
of correct assignments than the ones reported by Glover et al.
(2008) on a related study on samples in the Romsdalfjord. Using
microsatellite markers, these authors were able to classify cor-
rectly on average 62.5% of their reference samples, with correct
assignments varying from 28% to 100% using microsatellite mark-
ers. Fortunately, the escaped fish in that work belonged to a tank
with a characteristic genotype that allowed a 96% correct classifi-
cations for the reference individuals.

Salmon farmers may obtain their smolt from different produc-
ers although, in most instances, they do not mix smolt from differ-
ent producers in the same cage. Different producers may sell
smolts that are genetically almost identical while the genetic make
up of smolts sold from a given producer may vary substantially
(Glover et al., 2008). The feed received may also vary: although
farmers may use only one feed producer, they may order different
feeds or mixes depending on the size of the fish, the desired growth
rate, price and time to slaughter. Similarly, feed producers may
optimise their formulations according to the customer’s require-
ments and price and availability of ingredients in the international
market. The FA profile of the salmon is a reflection of its diet, and
therefore a farmed fish that escapes will start changing its profile
from the moment it escapes, but wild fish feeding on the rests of
feed around cages will also change its characteristic wild profile
and show phenotypic characteristics similar to farmed fish (Skog,
Hylland, Torstensen, & Berntssen, 2003). Thus, during a period of
time of about six months (Torstensen, Frøyland, Ørnsrud, & Lie,
2004) these two types of fish, escaped and opportunistic-wild, will
present an intermediate FA profile in their triglyceride fraction and
finally they will adopt the one reflecting its final diet. This is illus-
trated here by fish 511 and 516, that may have been farmed in ori-
gin but that had been long enough in the wild to completely
change their profiles. GC analysis only provides information
regarding the FA composition but the information contained in
the HR 13C NMR spectrum of the same sample is more complex
and includes other lipidic compounds as well as the positional dis-
tribution of the FA in the glycerol molecule (Aursand et al., 1995).
The additional information has probably a genetic component
since it has been shown to be vary according to the stock (Grahl-
Nielsen, 1997) and FA profiling of tryglcerides has been shown to
be of value for species identification species (Medina, Auborg, &
Martin, 1997).

The present work showed an apparently extraordinary ability of
fatty acid profiling combined with chemometrics to perform cor-
rect assignments of farmed fish to their farm of origin, even for fish
that had apparently very similar FA profiles, as those from farms 1
and 3. It is more difficult to explain the reason why NMR analysis
was not on average as successful as GC but it may be that NMR pro-
vides additional information that confused the model. For example,
genetic analysis gave on average a lower degree of correct classifi-
cation than GC analysis, if the NMR spectra contain part of the ge-
netic information that made fish from different farms similar, then
this additional information will contribute to create a noise that
will dilute the amount of discriminant information.

It must be kept in mind that there are approximately 30 farms
in the fjord. Therefore, allocation of escapes to their origin would
demand the analysis of reference fish from all the farms from the
region. An increase in the number of samples contained in the ref-
erence database usually provides better classifications for un-
known samples, at least when the samples are from very
different origins (Aursand et al., 2007). Alternatively, if it turns
out that the fish cultivated by different breeders in the same fjord
(i.e., under almost identical environmental conditions) are geneti-
cally similar and the breeders also use the same feed, then increas-
ing the number of fish analyzed may show an overlap of samples.
The only way to elucidate this issue would be to carry out the
work. Insufficient sampling of reference farms may be the reason
for the inability to classify free-living specimens 501, 502 and
504, while the reason for the lack of consensus in the classification
of the free-living fish 503, 506, 507 may be insufficient sampling of
reference farms together with the change in the FA profile from the
moment the fish changes the diet when escaping.

The accusation of being responsible for fish escaping is a very
serious one and it may have severe economical consequences for
the farmers. Taking into account that different analyses and differ-
ent statistical treatment on the very same data gave occasionally
different assignments (Table 2) and that there may always be some
true wild fish feeding around farms that end up displaying an
intermediate phenotype, we would recommend the application
of several analytical techniques and chemometrics to ensure the
reliability of the results. A clear example here is illustrated by sam-
ple 512: identified as a trout by visual examination, genetic analy-
sis would also have identified correctly the species, but both GC
and NMR analyses identified it as farmed, most probably from farm
2 or from another farm using the same diet. The opposite may also
be true: if the escaping of fish can be kept hidden for a long enough
period of time (about six months, depending on the water temper-
ature), the escaped fish may end up acquiring the FA profile of wild
fish and the escape will remain undetected by these analyses, as
seems to be here the case for fish 511 and 516.

Finally, since both the genetic make up of the farmed fish and its
feed varies with time (as already mentioned, breeders may receive
different smolts and they also purchase feeds of variable composi-
tion), the correct classification of escaped fish would require that
the authorities construct and continuously update a database con-
taining the genetic and phenotypic (FA) profiles of all the fish cul-
tivated in the area, so that if a escape takes place, it would be
possible to compare the escaped fish to all the possible donors
(in the given time-space window) and so identify their most likely
origin.

In conclusion, we believe that the analysis presented here will
be of great value to identify farmed and wild fish and also to trace
back farmed fish to their farm of origin. Feed and veterinary treat-
ments have been identified in a parallel study as the most critical
steps where undesirable substances can enter the production chain
of farmed salmon (RChain, EU Strep Project FP6-FOOD-5184). The
analytical methods described here together with genetic analysis
as described by Glover et al. (2008) will not only aid the authorities
to ensure correct consumer information and identify escapes; they
will also aid the stakeholders of the farmed salmon chain to trace
back the farm and tank of provenance of fish involved in incidents.
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